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A B S T R A C T

The emergence of single-cell RNA sequencing (scRNA-seq) has provided researchers with a powerful tool to in-

vestigate cell heterogeneity and human diseases at the level of individual cells. Cell clustering is a crucial step 

in scRNA-seq data analysis to identify marker genes and recognize cell types. However, scRNA-seq data present 

challenges for clustering tasks due to their high dimensionality, sparsity, and noise. Although some contrastive 

learning methods have achieved good results in clustering scRNA-seq data, they are highly sensitive to data aug-

mentation schemes. Here, we propose scAFGCC, a novel augmentation-free graph contrastive clustering method 

that combines graph convolutional network (GCN) and contrastive learning to exploit inter-cell relationships. 

scAFGCC does not require data augmentations or negative samples to learn graph representations. Instead, we 

generate positive samples by exploring the local structural information and the global semantics of the target 

nodes. We integrate feature representation learning with clustering tasks. Additionally, we introduce a reconstruc-

tion module that pretrains the model, facilitating faster training and improved performance. Our experiments on 

24 simulated and 13 real datasets show that scAFGCC outperforms seven state-of-the-art methods in terms of 

accuracy and robustness. We also apply scAFGCC to downstream tasks such as cell annotation and marker gene 

identification.

1. Introduction

Single cell RNA sequencing (scRNA-seq) is a powerful technique that 

enables the transcription of RNA in individual cells into cDNA and al-

lows for high-throughput sequencing. This technology provides a means 

to quantify gene expression at the single-cell level [1,2]. Compared to 

bulk RNA sequencing techniques, it can better reflect the differences and 

similarities between different cells, providing a powerful tool for study-

ing the biological processes of individual cells [3]. Cell clustering is one 

of the most important steps in scRNA-seq data analysis [4,5]. ScRNA-seq 

can identify new tumor cells and reveal the heterogeneity of tumor cells 

[6]. Additionally, it can infer the trajectory of cell differentiation, shed-

ding light on the developmental processes occurring within cells [7]. It 

can reveal the subtypes of cells and identify the expression patterns and 

functional differences between different subtypes, thereby providing a 

better understanding of the diversity and complexity of cells [8,9]. Due

to the technical limitations of the sequencing process and the inherent 

biological factors of the data, scRNA-seq data contain a large amount of 

noise of varying degrees [10,11]. In addition, it has high dimensionality 

and sparsity, which make cell clustering more complex [12]. Therefore, 

it is urgent to study and develop effective clustering methods with higher 

accuracy and broader applicability.

Numerous clustering methods developed specifically for analyzing 

scRNA-seq data have been widely used in research. SC3 [13] is based 

on k-means clustering, which integrates clustering results from multiple 

similarity metrics and feature transformation techniques. The graph-

based Seurat [14] first transforms the data into a graph and then applies 

graph clustering algorithms to identify clusters by discovering subgraphs 

on a k-nearest neighbor (KNN) graph. The multi-view clustering with 

graph learning (MCGL) method [15] constructs multiple feature spaces 

from the raw scRNA-seq data and jointly performs graph learning, graph 

factorization, and clustering in a unified optimization framework. There
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are subspace clustering methods based on low-rank representation, such 

as SinNLRR [16] and SCCLRR [17]. The similarity matrices learned 

from these models have greater advantages in distinguishing cell sub-

populations, but they are not suitable for highly sparse data. SIMLR 

[18] uses multi-kernel learning to transform scRNA-seq data into a low-

dimensional space represented as a graph structure, and then applies 

spectral clustering for cell grouping. However, some methods employ 

straightforward linear dimensionality reduction followed by clustering. 

This process may lead to the loss of crucial information as it relies 

on the data structure or overlooks the manifold structure of the orig-

inal data, potentially impacting the calculation of the similarity matrix. 

Additionally, due to the large size and complexity of scRNA-seq datasets, 

overly complex clustering methods can result in excessive computation 

and time costs.

To address the challenges posed by the increasing scale of scRNA-

seq data, deep learning-based methods have been proposed [19]. For 

example, scGDC [20] simultaneously learns deep representations and 

the affinity graph of cells by extending autoencoders with a self-

representation layer, and leverages generative adversarial learning to 

enhance subspace discrimination for rare and heterogeneous cell types. 

The scDCC [21] incorporates domain-specific knowledge as constraint 

information through a loss function during the clustering process, en-

hancing the interpretability of the clustering results. The scziDesk [22] 

combines weighted soft k-means clustering with a denoising autoen-

coder to enhance the association of similar cells and cluster cell pop-

ulations within the learned latent space. The scVI [23], which derives a 

probabilistic representation of scRNA-seq data from a deep generative 

model. The DCA [24] introduces the ZINB model into the autoencoder 

and uses the features extracted by a multi-layer neural network for data 

clustering. However, these methods only focus on the intrinsic feature in-

formation of the data and ignore the relationships between cells, leading 

to unsatisfactory feature learning effects.

To better capture the topological structure among cells, scGNN [25] 

utilizes graph neural networks to represent and aggregate cell–cell 

relationships, and employs a truncated mixture of Gaussians model 

to simulate heterogeneous gene expression patterns. However, scGNN 

may introduce false noise edges mixed with true edges, potentially re-

sulting in biased clustering results. The contrastive-sc [26] employs 

contrastive learning to acquire low-dimensional representations of sam-

ples. It learns the similarities and differences between samples and uses 

this information to cluster cells effectively. The scGCC [27] introduces 

innovative data augmentation techniques and integrates graph attention 

networks into contrastive learning to extract feature information. The 

UMGRL framework [28] employs a bi-level optimization strategy with 

dual weight networks to enhance multi-view graph contrastive learn-

ing, enabling adaptive importance weighting at the node, graph, and 

edge levels. The DT3OR framework [29] addresses distributional shifts 

through dual test-time training, using self-distillation and contrastive 

tasks to improve model adaptability in dynamic environments. These 

recent advances highlight the growing potential of contrastive learn-

ing, particularly in graph-based representation and adaptation tasks. 

However, existing contrastive learning methods are highly sensitive to 

data augmentation techniques.

Therefore, this paper introduces a novel and effective graph con-

trastive learning-based clustering method called scAFGCC, which does 

not require data augmentation or negative samples. Specifically, this 

model undergoes a two-stage training process. In the pre-training stage, 

we fine-tune the parameters of the GCN using the reconstruction mod-

ule. In the subsequent training stage, we further optimize the parameters 

of the GCN utilizing the augmentation-free graph contrastive learning 

module and the clustering module, aiming to achieve optimal perfor-

mance. Our approach eliminates the need for negative sample pairs 

and relies solely on the local structural information and global seman-

tic information of target nodes to explore their positive sample space. 

UMAP reduces dimensions by preserving local relationships between 

data points, thereby better retaining the structural information among

samples in single-cell data. It enables faster processing of large-scale 

single-cell datasets while maintaining good dimensionality reduction 

performance. By visualizing single-cell data as points in two-dimensional 

space, UMAP makes the distribution of data more understandable and 

interpretable [30].

2. Methods 

2.1. The framework of scAFGCC

The workflow of scAFGCC is depicted in Fig. 1 and comprises three 

key components: a reconstruction module, an augmentation-free graph 

contrastive learning module, and a clustering module. Specifically, the 

reconstruction module pretrains the model by reconstructing the gene 

expression matrix and adjacency matrix to speed up training and capture 

clustering-friendly features. The augmentation-free graph contrastive 

learning module utilizes both local and global semantic information to 

identify positive samples, optimizing the model to minimize distances 

between similar cells and maximize distances between different cell 

types. Meanwhile, we combine the contrastive learning module and clus-

tering module to fully extract meaningful features. The model training 

process involves two stages: first, we pretrain the model using the re-

construction module. The loss function during this pretraining stage is 

shown as follows:

𝐿 𝑝𝑟𝑒−𝑡𝑟𝑎𝑖𝑛 

= min 

( 

𝐿𝑟𝑒𝑐𝑜𝑛 

) 

, (1)

𝐿 𝑟𝑒𝑐𝑜𝑛 

= (1 − 𝛼)𝐿 𝑟𝑒𝑐𝑜𝑛−𝑎𝑑𝑗 

+ 𝛼𝐿 𝑟𝑒𝑐𝑜𝑛−𝑒𝑥𝑝. (2)

Where 𝐿 𝑟𝑒𝑐𝑜𝑛−𝑎𝑑𝑗 

and 𝐿 𝑟𝑒𝑐𝑜𝑛−exp 

denote the reconstruction loss of ad-

jacency matrix and expression matrix, respectively. The parameter 𝛼 is

a coefficient that balances the two losses (set to 0.2 in our experiment). 

( )

Second, we
(

 utilize
)

 the contrastive loss  

 

and the Kullback-Leibler 

𝐿
 

𝐿𝑐𝑙
(KL) loss to further train the model. The loss function during𝑘𝑙    this

training stage is represented as follows:

 

𝐿 𝑡𝑟𝑎𝑖𝑛 

= min 

[ 

(1 − 𝛽)𝐿 𝑐𝑙 

+ 𝛽𝐿 𝑘𝑙 

] 

. (3)

Where 𝐿 𝑐𝑙 

and 𝐿 𝑘𝑙 

represent contrastive loss and KL loss, respec

tively. The parameter 𝛽 is also a coefficient that balances the two terms 

-

(set to 0.2 in our experiment). The detailed expressions of these losses 

are illustrated in the following sections.

2.2. Data preprocessing

Due to the high noise and sparsity characteristics of scRNA-seq data, 

a significant number of entries in the matrix where genes are not ex-

pressed may cause noise interference and generate invalid information, 

so data preprocessing steps are necessary. We use the Scanpy [31] tool to 

accomplish this task. First, cells with low total gene expression and genes 

with few counts expressed in cells are filtered out. Second, a logarithmic 

transformation is applied to the filtered expression matrix to mitigate the 

adverse effects caused by sequencing depth differences. Third, to facil-

itate effective comparison between cells, the scRNA-seq data matrix is 

normalized. Finally, highly variable genes are selected and the count 

values are scaled to zero mean and unit variance.

2.3. Construction of scRNA-seq data graph

To represent the cell relationships in the expression matrix 𝑋, we 

define an undirected graph for the scRNA-seq data, which is essen-

tially a cell connectivity graph represented as an adjacency matrix 𝐴 

in the model.To align with the positive sample selection strategy in the 

downstream contrastive clustering module, 𝐴 is constructed using the k-

nearest neighbor (KNN) algorithm. In𝐴, each node corresponds to a cell 

and edges represent relationships between cells. This design offers the 

dual benefits of computational efficiency and effective capture of simi-

lar biological features. Specifically, if cell 𝑗 is one of the k-nearest nodes 

to cell 𝑖, an edge is assigned between cell 𝑗 and 𝑖 (i.e., 𝐴 𝑖𝑗 

= 𝐴 𝑗𝑖 

= 1;
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Fig. 1. The workflow of scAFGCC, which consists of three main components: the reconstruction module, the augmentation-free graph contrastive learning module, 

and the clustering module. First, the reconstruction module pretrains the model by reconstructing the gene expression matrix 𝑿 and adjacency matrix 𝑨. Then, the 

augmentation-free graph contrastive learning module utilizes local structural and global semantic information to identify positive samples. Finally, integrate the 

contrastive learning module and clustering module together to extract meaningful features by minimizing the contrastive loss and KL loss.

otherwise, 𝐴 𝑖𝑗 

= 𝐴 𝑗𝑖 = 0). We use cosine similarity to measure the dis-

tance between cells, which offers the advantage of maintaining a certain 

robustness and accuracy in handling high-dimensional sparse data and 

different distribution situations [32].

2.4. Reconstruction module

To extract as many common features as possible from the training 

data and reduce the burden of the model on specific learning tasks, we 

add a reconstruction module in scAFGCC. This module comprises two 

independent decoders: the Linear Decoder (LD) and the Inner Product 

Decoder (PD). We fully utilize the cellular feature information and the 

topological structure between cells to reconstruct the gene expression 

matrix 𝑋 and restore the adjacency matrix 𝐴. By minimizing the loss 

between the original data and the reconstructed data, the model is pre-

trained to capture more clustering-friendly features.

Specifically, LD consists of two linear layers and its output is 𝑋 

′ = 

LD (𝑍). The reconstruction loss is defined as:

𝐿 recon-exp 

= ‖

‖

𝑋 − 𝑋 

′
‖

‖

2
2 . (4)

𝑍 obtains
(

 

 𝐴′
 through PD, with the formula: 𝐴 

′ =
 ) 

 PD 𝑍  

 ( ) = 𝜎 𝑍𝑍 

⊤ ,

where 𝜎 (⋅) is an activation function. The reconstruction loss of the adja-

cency matrix adopts the binary cross-entropy loss function with negative 

sampling:

𝐿 recon−adj = − 1
𝐸

( 

∑ 

𝑖 

log 

(

𝑦̂pos
𝑖

) 

+ 

∑ 

𝑗 

log 

( 

1 − 𝑦̂neg
𝑗

) 

) 

, (5)

where 𝑦̂pos
 and𝑖  𝑦̂neg

are𝑗  the outputs of the PD, representing positive

edges and randomly sampled negative edges. 𝐸 is the number of edges 

in the graph.

2.5. Augment-free graph contrastive clustering module

To achieve a reduction in intra-cellular distance among the same 

cell types and an expansion in inter-cellular distance between different

cell types, we introduce the graph contrastive learning module based on 

the idea of Augment-Free Graph Representation Learning (AFGRL) [33]. 

AFGRL avoids ignoring structural information due to data augmentation 

and fully leverages the global semantics and local structural information 

of scRNA-seq data to better capture pairwise proximity relationships be-

tween cells. Unlike AFGRL, we incorporate a reconstruction module and 

a clustering module. Together, they complement the augmentation-free 

contrastive objective and are specifically designed to enhance cluster-

ing performance for scRNA-seq data. In scAFGCC, we use the GCN to 

implement two independent encoders: the online encoder 𝑓 𝜃 

(⋅) and the

target encoder 𝑓 𝜉 

(⋅). These encoders take the preprocessed expression

matrix 𝑋 and the adjacency matrix 𝐴 as inputs, generating the online 

representation 𝐻 

𝜃 = 𝑓  representatio  

 𝜃 

(𝑋, 𝐴) and target n 𝐻 

𝜉 = 𝑓 𝜉   

 

(𝑋,𝐴),
respectively. The i-th row elements of  

 𝐻 

𝜃 and 𝐻 

𝜉 correspond to the dis-

𝑥 ℎ𝜃 
𝜉

tinct node embeddings of the same sample cell  

 

, denoted as  and .𝑖 𝑖  ℎ𝑖  

 

𝑓 𝜉 (⋅) is updated by the exponential moving average (EMA) of 𝑓 (⋅) [𝜃 34].

For each cell 𝑥𝑖 ∈ 𝑋, we need to identify the set of real positive nodes 

𝑃 that will ultimately be used to calculate the𝑖  contrastive loss. Nodes 

similar to 𝑥  

 

are screened and marked as𝑖   the nearest neighbor node set 

𝐵𝑖 . The  

 

screening process consists of two steps. The first step involves

calculating the cosine similarity between cell 𝑥 𝑖 

and all other remaining 

cells 𝑥 𝑗 

, with the following formula:

𝑠𝑖𝑚 

( 

𝑥 𝑖 

, 𝑥 𝑗 

) 

=
ℎ 

𝜃
𝑖 ⋅ ℎ 

𝜉
𝑗

‖ℎ𝜃𝑖 ‖‖ℎ
𝜉
𝑗‖ 

,∀𝑥 𝑖 

∈ 𝑋. (6)

The second step involves using the KNN algorithm to find the top 𝑘 (𝑡𝑜𝑝𝑘) 

nodes that are similar to cell 𝑥 𝑖 

, to obtain 𝐵 𝑖 

.

However, relying solely on K-nearest neighbor (KNN) search to es-

tablish cell relationships has limitations, as it is unidirectional and does 

not incorporate label information during computation. This can lead to 

noise in the nearest neighbor node set 𝐵 𝑖 

, necessitating the removal of 

false positive samples. We address this issue from two perspectives. From 

a global perspective, certain nodes may exhibit semantic similarity to 𝑥 𝑖 

and belong to the same cluster, but they may not share an edge in 𝐴. To
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capture the semantic information of the original data, we apply the k-
𝜉

means clustering algorithm to the node embeddings ℎ  

 , resulting in a cell𝑖   

collection named 𝐶 .𝑖  𝐶 represents𝑖  a cluster that includes cells similar to

𝑥 and preserves the  

 

global semantic characteristics of the data. Since𝑖  

the k-means is sensitive to the initialization of the cluster centroids, the 

clustering process is run multiple times, and 𝐶 𝑖 

is the union of the results 

to ensure robustness. From a local perspective, based on the adjacency 

matrix 𝐴, we can identify and label the nodes that are directly connected 

to 𝑥 𝑖 

as 𝑁𝑖 . The final 𝑃 can𝑖  be calculated as follows:

𝑃 𝑖 

=
(

𝐵𝑖 ∩ 𝐶 𝑖
) 

∪
(

𝐵𝑖 ∩ 𝑁 𝑖
) 

. (7)

The size of the positive sample set 𝑃 𝑖 is adaptive to both the dataset scale 

and the diversity of cell types, while its quality is guaranteed through 

the integration of KNN-based local similarity and K-means-based global 

semantic consistency.

scAFGCC enhances the representation of the target node 𝑥 𝑖 and 

generates better node embeddings. The contrastive loss is defined by 

maximizing the cosine distance between the target node 𝑥 𝑖 

and 𝑃 𝑖 

. This 

approach is utilized to quantify the similarity between them, and the 

contrastive loss is given by the following expression:

𝐿 𝑐𝑙 

= − 1
𝑁

𝑁
∑

𝑖=1

∑

𝑥 𝑗∈𝑃 𝑖

𝑧 

𝜃
𝑖 𝑓 𝜉

(

𝑥𝑗 , 𝐴 

) 𝑇

‖

‖

‖

𝑧𝜃𝑖
‖

‖

‖

‖

‖

‖

𝑓𝜉
(

𝑥 𝑗 , 𝐴
)

‖

‖

‖

, (8)

where 

( ( ))

𝑧𝜃𝑖 = 𝑞 𝜃 𝑓 𝜃 𝑥𝑖, 𝐴
 

 ,∀𝑥 𝑖 ∈ 𝑋. 𝑞 𝜃 

(⋅) represents the predictor

network. 𝑁 is the number of cell nodes.

2.6. Clustering module

Drawing on DEC [35], it can be concluded that clustering perfor-

mance can be significantly improved by learning the mapping from the 

data space to a low-dimensional feature space and iteratively optimiz-

ing the clustering objective. First, soft assignments between clustering 

centers 𝜇 𝑗 

and embedding nodes 𝑧 𝑖 are calculated using Student’s

t-distribution:

𝑞 𝑖𝑗 =

(

1 + ‖

‖

‖

𝑧 𝑖 − 𝜇 𝑗
‖

‖

‖

2
∕𝛼 

)− 

𝛼+1
2

∑ 

𝑗′

(

1 + ‖

‖

‖

𝑧𝑖 − 𝜇 𝑗′
‖

‖

‖

2
∕𝛼 

)− 

𝛼+1
2

, (9)

where 𝑧 𝑖 

represents the latent representation of the cell node 𝑥 𝑖 

, and 

𝛼 denotes the degrees of freedom of the t-distribution (set to 1). Based 

on 𝑞 𝑖𝑗 , we square it and normalize it using soft cluster frequencies to

obtain the auxiliary distribution 𝑝 𝑖𝑗 

, which is expressed by the following

formula:

𝑝 𝑖𝑗 

=
𝑞2𝑖𝑗∕ 

∑ 

𝑖 

𝑞 𝑖𝑗
∑ 

𝑗′ 
𝑞 

2
𝑖𝑗′ 

∕ 

∑ 

𝑖 𝑞 𝑖𝑗′
. (10)

Finally, we define the clustering loss as the KL divergence between 

the soft assignments 𝑞 𝑖 and the auxiliary distribution 𝑝 𝑖 

, as shown in the

following formula: 

𝐿 𝑘𝑙 

= 𝐾𝐿(𝑃 ‖𝑄) = 

∑ 

𝑖 

∑ 

𝑗
𝑝 𝑖𝑗 

log 

𝑝 𝑖𝑗

𝑞 𝑖𝑗
. (11)

3. ScRNA-seq datasets

To thoroughly evaluate the performance of our model, we collected 

24 simulated datasets and 13 real-world datasets. For simulated datasets, 

we generated 12 balanced datasets and 12 imbalanced datasets using 

the R package “Splatter” [36]. The balance of the datasets is primarily 

determined based on whether the cell clusters have the same size. For 

the balanced datasets, they contain 4, 8, 12, or 16 cell clusters, with each

cluster consisting of 250 cells. Each cell has 2500 genes, and the data 

sparsity ranges from 28 % to 47 %. As for the imbalanced datasets, each 

dataset includes 3000 cells and 2500 genes. They have the same number 

of cell clusters as the balanced datasets, and the data sparsity ranges 

from 29 % to 46 %. Further detailed information regarding balanced 

and imbalanced datasets is recorded in Supplementary Tables S1 and 

S2.

Furthermore, we collect 13 real-world scRNA-seq datasets from pub-

licly accessible platforms. These datasets are diverse in terms of tissue 

types, including human brain, human pancreas, mouse embryo, and 

mouse diaphragm, as well as in terms of biological systems, such as 

different cell types and varying numbers of cell clusters. The datasets, 

which come from different sequencing platforms, provide a broad range 

of cell numbers ranging from 268 to 3605 to evaluate our model’s 

performance. Specifically, the 13 datasets consist of Klein [37], Deng 

[38], Diaphragm [39], Camp1 [40], Darmanis [41], Muraro [42], Pollen 

[43], Zeisel [44], Human1, Human2, Human3 [45], Tosches [46] and 

Shekhar [47] each with detailed information shown in Table 1 and 

Supplementary Table S3.

4. Evaluation metrics

The evaluation metrics for clustering can be categorized into external 

evaluation metrics and internal evaluation metrics. External evaluation 

metrics assess the quality of clustering results using known data labels 

or class information. In this paper, we employ the external evalua-

tion metrics: Adjusted Rand Index (ARI) [48] and Normalized Mutual 

Information (NMI) [49] to assess model performance.

The ARI can evaluate the similarity of two assignments by comparing 

all the sample pairs while ignoring permutations. It evaluates the effec-

tiveness of clustering by calculating the number of the sample pairs that 

are distributed
{

 in the same
}

 or different class clusters
{

 in the predicted
}

 

 

label set 𝑃 = 𝑃1  

, 𝑃 2 

,… , 𝑃
 

 

 

and real label set 𝑇 =
 

𝑘  𝑇1  

, 𝑇 2,… , 𝑇
 

 .𝑘  It is

defined specifically as:

𝐴𝑅𝐼(𝑃 , 𝑇 ) = 

∑ 

𝑖𝑗 

(

𝑛 𝑖𝑗
2

) 

− 

[ 

∑ 

𝑖 

(

𝑎 𝑖
2

) 

∑ 

𝑗

(

𝑏 𝑗
2

)] 

∕ 

(

𝑛
2

)

1
2

[ 

∑ 

𝑖 

(

𝑎 𝑖
2

) 

+ 

∑ 

𝑗

(

𝑏 𝑗
2

)] 

− 

[ 

∑ 

𝑖 

(

𝑎 𝑖
2

) 

∑ 

𝑗

(

𝑏𝑗
2

)] 

∕ 

(

𝑛
2

)
,

(12)

where 𝑛 

 

represents the number of cells that are present in both 𝑃 

 

and𝑖𝑗 𝑖  

𝑇 . 𝑎 

 

and 𝑏 respective 

 

represent the cell counts in 𝑃 

 

and .𝑗 𝑖 𝑗 𝑖  𝑇𝑗  ARI ranges

from −1 to 1. The larger the value, the more consistent the clustering 

results are with the real situation.

The NMI is commonly used in clustering, which measures the sim-

ilarity between the two clustering results, ignoring the permutations. 

The NMI ranges from 0 to 1. The higher the NMI, the more accurate the

Table 1 

Detailed information of the 13 real scRNA-seq datasets.

Dataset Cells Genes Cluster number Species Accession ID

Klein 2712 24,175 4 Mouse GSE65525

Deng 268 22,431 6 Mouse GSE45719

Diaphragm 1858 22,966 6 Mouse GSM4505405

Camp1 777 19,020 7 Human GSE81252

Darmanis 420 22,083 8 Human GSE67835

Muraro 2126 19,127 10 Human GSE85241

Pollen 301 23,730 11 Human SRP041736

Zeisel 3005 19,958 12 Mouse GSE60361

Human1 1937 20,125 14 Human GSM2230757

Human2 1724 20,125 14 Human GSM2230758

Human3 3605 20,125 14 Human GSM2230759

Tosches 18,664 23,500 15 Reptilian unknown

Shekhar 26,830 13,166 18 Mouse unknown
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Table 2 

Comparison of ARI values for ten clustering methods across 13 real scRNA-seq datasets.

Dataset K-means scziDesk scVI Seurat SIMLR SOUP contrastive-sc scNAME scBGEDA scAFGCC

Human1 0.436 ± 0.08 0.724 ± 0.13 0.442 ± 0.02 0.500 ± 0.00 0.293 ± 0.02 0.268 ± 0.01 0.684 ± 0.09 0.776 ± 0.10 0.820 ± 0.03 0.961 ± 0.01

Human2 0.368 ± 0.12 0.764 ± 0.13 0.565 ± 0.02 0.442 ± 0.00 0.366 ± 0.02 0.597 ± 0.14 0.775 ± 0.09 0.807 ± 0.07 0.881 ± 0.07 0.929 ± 0.02

Human3 0.650 ± 0.21 0.822 ± 0.08 0.703 ± 0.02 0.514 ± 0.00 0.506 ± 0.03 0.213 ± 0.02 0.611 ± 0.02 0.745 ± 0.12 0.750 ± 0.04 0.961 ± 0.00

Diaphragm 0.148 ± 0.02 0.361 ± 0.01 0.312 ± 0.02 0.316 ± 0.00 0.402 ± 0.02 0.431 ± 0.00 0.451 ± 0.02 0.791 ± 0.08 0.610 ± 0.01 0.771 ± 0.08

Camp1 0.669 ± 0.12 0.755 ± 0.00 0.662 ± 0.03 0.599 ± 0.00 0.614 ± 0.03 0.546 ± 0.00 0.725 ± 0.03 0.743 ± 0.12 0.607 ± 0.03 0.788 ± 0.00

Darmanis 0.580 ± 0.10 0.691 ± 0.05 0.718 ± 0.07 0.628 ± 0.00 0.632 ± 0.06 0.343 ± 0.08 0.704 ± 0.02 0.765 ± 0.11 0.717 ± 0.07 0.838 ± 0.01

Deng 0.596 ± 0.27 0.867 ± 0.02 0.335 ± 0.04 0.325 ± 0.00 0.610 ± 0.08 0.824 ± 0.01 0.845 ± 0.02 0.770 ± 0.10 0.876 ± 0.00 0.834 ± 0.01

Klein 0.705 ± 0.04 0.815 ± 0.02 0.541 ± 0.05 0.778 ± 0.00 0.510 ± 0.08 0.471 ± 0.00 0.754 ± 0.01 0.747 ± 0.12 0.843 ± 0.04 0.962 ± 0.00

Muraro 0.738 ± 0.09 0.789 ± 0.07 0.485 ± 0.02 0.446 ± 0.00 0.321 ± 0.03 0.536 ± 0.08 0.815 ± 0.01 0.772 ± 0.10 0.849 ± 0.09 0.904 ± 0.00

Pollen 0.806 ± 0.06 0.881 ± 0.04 0.880 ± 0.04 0.767 ± 0.00 0.806 ± 0.02 0.430 ± 0.02 0.898 ± 0.01 0.797 ± 0.08 0.868 ± 0.03 0.918 ± 0.02

Zeisel 0.484 ± 0.01 0.608 ± 0.04 0.364 ± 0.03 0.327 ± 0.00 0.613 ± 0.05 0.509 ± 0.01 0.540 ± 0.06 0.820 ± 0.02 0.623 ± 0.01 0.820 ± 0.01

Tosches 0.693 ± 0.13 0.617 ± 0.07 0.566 ± 0.02 0.444 ± 0.00 0.575 ± 0.04 0.480 ± 0.01 0.392 ± 0.04 0.584 ± 0.06 0.712 ± 0.02 0.891 ± 0.01

Shekhar 0.507 ± 0.07 0.351 ± 0.06 0.467 ± 0.03 0.714 ± 0.00 0.823 ± 0.05 0.752 ± 0.03 0.463 ± 0.03 0.712 ± 0.09 0.705 ± 0.05 0.979 ± 0.02

partition. The formula is shown as follows: 

𝑁𝑀𝐼 (𝑃 , 𝑇 ) = 

2 × 𝐼 (𝑃 ; 𝑇 )
𝐻 (𝑃 ) + 𝐻 (𝑇 )

, (13)

where 𝐼 (𝑃 ; 𝑇 ) represents the mutual information, 𝑃 and 𝑇 stand for 

the predicted and true labels of cells, respectively, and 𝐻 (⋅) denotes the 

cross entropy.

5. Results

To assess the performance of scAFGCC, we select nine state-of-the-art 

methods for comparison, including traditional PCA-based dimension-

ality reduction with K-means and Seurat, semisoft clustering method 

SOUP, multi-kernel similarity learning method SIMLR, as well as three 

other deep learning-based methods. The detailed information regarding 

the comparison methods is presented in Supplementary Table S4.

scAFGCC is implemented in Python 3 using the PyTorch framework. 

Both the online encoder and the target encoder consist of a single layer of 

GCN. The input dimension is determined by the number of genes, while 

the output dimension is set to 512, which serves as the dimensionality 

of the embedding vectors. The predictor network consists of two linear 

layers with node sizes of (1024, 512). scAFGCC is initially pretrained 

for 50 epochs and then undergoes a formal training phase of 100 epochs 

using the AdamW optimizer. The initial learning rate is set to 0.001. In 

constructing the scRNA-seq graph, 𝑘 represents the number of neighbors, 

initially set to 10. 𝑡𝑜𝑝𝑘 specifies the selection of the top 𝑘 nodes with the 

highest similarity, set to 3. We employ the HDBSCAN [50] algorithm for 

cell clustering.

5.1. Clustering analysis in simulated datasets

We conduct cluster analysis on 12 balanced and 12 imbalanced 

datasets using six state-of-the-art methods. The clustering performance 

is evaluated with ARI and NMI metrics. For each dataset, each method is 

independently run 5 times, and the average is taken as the final result. 

The experimental results are presented as box plots in Supplementary 

Figure S1.

From the figure, it can be seen that our model outperforms the others, 

whether on balanced or imbalanced datasets. On balanced datasets, the 

average ARI of our model is 0.04 higher than that of contrastive-sc and 

0.17 higher than that of scziDesk. The average NMI of our model is 0.07 

higher than that of contrastive-sc and 0.17 higher than that of scziDesk. 

On imbalanced datasets, the average ARI and NMI of our model are 

0.14 and 0.11 higher than those of contrastive-sc, respectively. We also 

observe that the clustering performance of all methods declines from bal-

anced to imbalanced datasets, which is reasonable. Imbalanced datasets 

refer to a situation where there is a significant difference in the number 

of samples among different classes. Usually, the minority class contains 

far fewer samples compared to the majority class, potentially resulting in 

clustering algorithms performing poorly in recognizing and separating

the minority classes. However, our model still maintains high cluster-

ing performance. Real-world data is often imbalanced, and our model 

exhibits high accuracy and robustness to it.

5.2. Clustering analysis in real datasets

In this experiment, we apply the scAFGCC model to 13 real datasets 

that are annotated with ground truth labels. We then compare its 

clustering performance with nine state-of-the-art models to assess its ef-

fectiveness. We use ARI and NMI as evaluation metrics. To ensure the 

stability and reliability of the results, we run all methods 10 times using 

the default parameters. We then calculate the average value for each 

method and measure the standard deviation as the error bar to assess 

the robustness of the models. Next, we perform parameter optimization 

on contrastive-sc and scziDesk to update the above results.

Table 2 and Supplementary Table S5 present the quantitative val-

ues of two distinct metrics for ten different methods across a total of 

13 real scRNA-seq datasets. We can observe that scAFGCC outperforms 

the other nine clustering methods on almost all datasets. Specifically, 

except for Deng and Diaphragm, scAFGCC achieves the highest ARI and 

NMI among all the compared methods, with ARI and NMI scores both 

exceeding 0.77 and 0.70, respectively. Despite not achieving the high-

est performance in Deng, scAFGCC still ranks fourth in terms of ARI 

values. This could be because the Deng dataset has a small number of 

samples, causing the graph to be dense and the model to overfit. In 

particular, for Human1, Human2, and Human3, scAFGCC demonstrates 

significantly higher ARI values compared to contrastive-sc, with differ-

ences of 0.28, 0.15, and 0.35, respectively. For Darmanis and Pollen, the 

ARI values of scAFGCC are 0.15 and 0.04 higher than those of scziDesk, 

respectively. In comparison to contrastive-sc, scAFGCC exhibits a re-

markable improvement with an increase of 0.21 in ARI and 0.19 in 

NMI values for the Klein dataset. The lower error bars in scAFGCC in-

dicate its higher robustness compared to other methods. Furthermore, 

on large-scale datasets our method consistently surpasses all competing 

approaches. In particular, it achieves notable improvements in ARI over 

scBGEDA, the second-best method: 0.18 on the Tosches dataset and 0.27 

on the Shekhar dataset. These results underscore the superior robust-

ness and scalability of our approach in addressing large-scale scRNA-seq 

data. To assess the performance and competitiveness of scAFGCC more 

accurately, we compare this model with the most recent methods in the 

field, such as scNAME [51] and scBGEDA [52]. The two methods are 

executed with 10 different random seeds on 13 real datasets each, and 

we calculate the mean and standard deviation of ARI and NMI for each 

dataset. The corresponding experimental outcomes are documented in 

Supplementary Table S6, revealing that, scAFGCC demonstrates superior 

performance compared to the two recent methods.

To provide a more intuitive demonstration of scAFGCC’s cluster-

ing performance, we select two real datasets (Human1 and Klein) and 

employ UMAP for dimensionality reduction and visualization. To pro-

mote uniformity and impartiality in our evaluations across diverse
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Fig. 2. UMAP visualization of scAFGCC and other clustering methods on two datasets. (A) Human1 dataset. (B) Klein dataset.

datasets and methods, we utilize the default UMAP parameters pro-

vided by the Scanpy toolkit consistently throughout all experiments. 

We choose five models for comparison and utilize ARI and silhouette 

coefficient [53] to measure their clustering performance. The ground 

truth labels are also utilized to evaluate and validate the clustering per-

formance. As shown in Fig. 2 (the UMAP plots for the other datasets 

are displayed in Supplementary Figure S2), scAFGCC demonstrates clear 

and distinct partitioning of various cell clusters on the both datasets. 

Furthermore, scAFGCC attains the highest ARI values and silhouette co-

efficients on the both datasets, surpassing 0.96 and 0.70, respectively. 

In contrast, other methods tend to mix different cell subtypes together. 

The clustering results obtained using scAFGCC are visually compelling, 

clearly demonstrating effective separation.

5.3. Ablation study

To assess the performance gains introduced by the reconstruction 

module and clustering module, we conduct an ablation experiment on 

scAFGCC. We define three variant models: scAFGCC-R, which excludes 

the reconstruction module; scAFGCC-C, which excludes the clustering 

module; and scAFGCC-R-C, which excludes both the reconstruction and 

clustering modules. We perform experiments on seven datasets with 

different species and varying numbers of clusters (Human1, Human2, 

Diaphragm, Deng, Muraro, and Pollen). The evaluation metrics are ARI 

and NMI. To obtain reliable results, we execute each variant model 

10 times and derive the average outcomes. The corresponding exper-

imental results are presented in Fig. 3. We can observe that scAFGCC 

outperforms the three variant models. This indicates that both the 

reconstruction module and clustering module indeed contribute to per-

formance improvements. For example, in the Deng dataset, scAFGCC

achieves an ARI improvement of 0.10, 0.06, and 0.06 over scAFGCC-R, 

scAFGCC-C, and scAFGCC-R-C, respectively.

5.4. Hyperparameter analysis

The 𝑘 and 𝑡𝑜𝑝𝑘 are two hyperparameters in our model. The 𝑘 rep-

resents the number of neighbors for each cell. The 𝑡𝑜𝑝𝑘 represents the 

number of similar cell nodes in the set 𝐵 𝑖 

. We utilize ARI and NMI as 

evaluation metrics. The reported experimental results are the average 

values obtained from running the experiments independently 5 times. 

For 𝑡𝑜𝑝𝑘, we select a range from 2 to 10. Fig. 4(A) displays the ARI val-

ues for all datasets with different 𝑡𝑜𝑝𝑘 values. The clustering performance 

of scAFGCC remains relatively stable as the 𝑡𝑜𝑝𝑘 value increases, which 

suggests that scAFGCC is not highly sensitive to 𝑡𝑜𝑝𝑘. 𝑡𝑜𝑝𝑘 = 6 achieves 

the best performance across the majority of the datasets. We conduct 

scAFGCC on all datasets with 𝑘 = {5, 10, 15, 20, 25, 30}. The results are 

recorded in Fig. 4(B). It is apparent that scAFGCC demonstrates low sen-

sitivity to variations in the 𝑘 parameter across most datasets. However, it 

is worth noting that in datasets such as Human1, Diaphragm, Darmanis, 

and Deng, the performance of scAFGCC exhibits notable changes as the 

𝑘 value increases. On most datasets, 𝑘 = 5 enables scAFGCC to achieve 

optimal performance. Supplementary Figure S3 shows two line plots 

depicting the NMI values.

For the above four datasets that are sensitive to variations in the 𝑘, 

we perform joint optimization of both 𝑘 and 𝑡𝑜𝑝𝑘 values. As shown in 

Fig. 4(C), this further confirms the sensitivity to both 𝑡𝑜𝑝𝑘 and 𝑘 param-

eters. From the figure, we can observe that in the case of Human1 and 

Deng datasets, lower values of 𝑘 result in higher model performance, 

while the opposite is true for Diaphragm and Darmanis datasets.
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Fig. 3. Performance comparison of scAFGCC and its variant models (scAFGCC-R, scAFGCC-C, scAFGCC-R-C) on seven datasets. (A) ARI scores. (B) NMI scores.
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Fig. 4. Analysis of scAFGCC hyperparameters (𝑡𝑜𝑝𝑘 and 𝑘). (A) ARI values for different datasets with varying topk values. (B) ARI values for different datasets with 

varying 𝑘 values. (C) Joint optimization of 𝑘 and 𝑡𝑜𝑝𝑘 for sensitive datasets.

5.5. Robustness analysis

In scRNA-seq data analysis, dropout events are a significant chal-

lenge. Next, we evaluate the robustness of scAFGCC in handling dropout 

events. During the data preprocessing stage, we simulate dropout events 

by setting a specific proportion of non-zero values to zero. We select six 

datasets with different species and varying cluster numbers, including 

Human1, Human2, Darmanis, Deng, Klein and Muraro. For fair compar-

ison, we run scAFGCC 5 times using default parameters and utilize the 

average values of ARI and NMI to evaluate the clustering performance. 

For each dataset, we respectively set dropout rates of 0, 20, 40, and 

60 % to test the robustness of the model. High dropout events result in 

information loss in scRNA-seq data, posing greater challenges for dimen-

sionality reduction and clustering algorithms. The relevant experimental 

results are shown in Fig. 5. It is evident that in the majority of datasets, 

as the dropout rate increases, there is a marginal decrease in the per-

formance of the model. This provides further evidence that scAFGCC 

exhibits high stability and robustness in handling dropout events.

Furthermore, we conduct a down-sampling experiment on the same 

six datasets. To ensure fairness, scAFGCC is executed five times, yielding 

average values for ARI and NMI. We downsample the datasets, extract-

ing 100, 80, 60, and 40 % of the cells, respectively. The experimental 

results are presented in Supplementary Figure S4. We can conclude

that scAFGCC demonstrates stability across different down-sampling 

datasets, further highlighting its robustness.

5.6. Biological analysis

Biological analysis plays a crucial role in scRNA-seq data analysis. 

To further investigate the biological significance of the clustering results 

obtained from scAFGCC, we perform downstream tasks, including cell 

annotation and marker gene identification for the Darmanis dataset.

In this part, we perform cell annotation. Specifically, based on the 

predicted labels from scAFGCC and ground truth labels, we separately 

utilize the Wilcoxon Rank Sum test [54] to identify the top 50 differ-

entially expressed genes (DEGs) for each predicted cluster and ground 

truth cluster. By comparing the number of overlapping genes between 

each predicted cluster and ground truth cluster, we calculate the over-

lapping ratio as a measure of similarity between the predicted clusters 

and ground truth clusters. To validate the superiority of scAFGCC, we 

also compare it with four other models. The visual results are presented 

in Fig. 6(A). We can observe that scAFGCC can assign each cell type to a 

unique predicted cluster. However, for methods such as contrastive-sc, 

scziDesk, and K-means, they are unable to assign OPC (Oligodendrocyte 

Precursor Cell) to a single predicted cluster. For scVI, microglia can-

not be unambiguously assigned to a single predicted cluster, and no
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Fig. 5. Clustering performance (ARI and NMI) of scAFGCC on six datasets with varying dropout rates (0 %, 20 %, 40 %, and 60 %).
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Fig. 6. Result analysis of cell annotation and marker gene identification in the Darmanis dataset. (A) Matrix plots illustrating the overlap between the top 50 DEGs 

in clusters identified by five methods and the gold standard cell types. (B) The matrix diagram of the first three marker genes for each cluster predicted by scAFGCC.

specific cell type is discovered to correspond to cluster 5. K-means re-

peatedly assigns microglia to clusters 0 and 2, while clusters 4 and 7 

cannot be accurately annotated by K-means. Overall, scAFGCC is able to 

fully annotate all predicted clusters. Specifically, the predicted clusters 

(0–7) can be annotated as astrocytes, fetal-replicating, fetal-quiescent, 

microglia, neurons, endothelial, oligodendrocytes, and OPC.

Furthermore, as a part of the biological analysis, marker gene iden-

tification is conducted. We also utilize the Wilcoxon Rank Sum test to 

identify marker genes for each cluster predicted by scAFGCC. As shown 

in Fig. 6(B), they respectively present the matrix plot and heat map of the 

top three marker genes for each cluster predicted by scAFGCC (The top 

10 marker genes for different cell clusters are shown in Supplementary 

Figure S5). We can identify clusters with enriched expression of specific 

marker genes, which helps in characterizing and distinguishing different 

cell types within the dataset. To further validate the presence of marker 

genes in the annotated cell types, we compare them with the marker 

genes documented in the Cell Marker database [55] and the Darmanis 

dataset [41]. The results are recorded in Supplementary Table S7. We

discover that the majority of marker genes align with the records in the 

database. However, there are a few specific genes that are not docu-

mented, suggesting the possibility of novel candidates for marker genes. 

For instance, B2M and CEBPD show considerably higher expression lev-

els in endothelial cells compared to others, indicating their potential as 

marker genes for endothelial cells.

To explore the biological relevance of the identified marker genes, 

we conduct Gene Ontology (GO) and KEGG pathway analysis. Initially, 

we select the top 40 marker genes sorted by 𝑝-value within each clus-

ter, resulting in a total of 300 genes after converting gene symbols to 

ensemble IDs. We elucidate the biological functions of these genes. The 

distribution of genes enriched in GO terms is presented in Fig. 7, while 

the top 25 terms of the related GO sorted by 𝑝-values, are documented 

in Supplementary Figure S6. In the biological process category, GO 

terms such as ‘nervous system development’ (GO:0007399) and ‘multi-

cellular organism development’ (GO:0007275) exhibit high enrichment 

levels, both strongly associated with the development of human brain 

cells [41]. In the cellular component category, the most enriched and
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Fig. 7. Genomic interpretability of scAFGCC in the Darmanis dataset: Exploring the gene distribution across three categories of GO enrichments.
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Fig. 8. Efficiency analysis of scAFGCC. (A) Runtime analysis. (B) Memory usage analysis.

notable GO term is ‘cell junction’ (GO:0030054). Cell junctions play 

a crucial role in the formation and regulation of brain vasculature 

[56]. In the molecular function category, the GO term ‘protein binding’ 

(GO:0005515) stands out with a small 𝑝-value and a substantial gene 

distribution, crucial for the formation of adult neural stem cells [57]. 

Moreover, the top 15 terms of KEGG pathways ranked by 𝑝-value are 

shown in Supplementary Figure S7(A). The top pathway is ‘MicroRNAs 

in cancer’. Although this pathway is related to cancer, microRNAs also 

play a crucial role in the nervous system, participating in the devel-

opment and regulation of neuronal function. The pathway with the 

highest percentage of genes is ‘PI3K-Akt signaling pathway’, which is 

also significant in the nervous system, participating in processes such 

as neuronal growth, survival, and synapse formation [58]. Meanwhile, 

detailed information about this pathway is visualized in Supplementary 

Figure S7(B). Overall, these results indicate that scAFGCC can uncover 

meaningful biological information.

5.7. Efficiency analysis

To validate the efficiency of scAFGCC, we employ the R package 

“Splatter” to simulate six datasets of varying sizes. These datasets in-

clude 1k, 2k, 4k, 6k, 8k, and 10k cells, each consisting of 2000 genes. 

As the number of cells varies, we measure the runtime and memory us-

age of scAFGCC. The results are presented in Supplementary Figure S8. 

It is evident that the runtime and memory usage of scAFGCC do not

exhibit quadratic or exponential growth with the number of cells, but 

instead demonstrate a linear increase.

Furthermore, we perform runtime and memory analysis on four deep 

learning methods, including scAFGCC, scNAME, contrastive-sc, scVI, 

and scziDesk, using 11 real datasets. In Fig. 8, we can observe that 

contrastive-sc is the fastest method among the five methods, possibly due 

to its fewer trainable parameters. However, it is worth mentioning that 

our model achieves superior performance compared to contrastive-sc. 

Our model outperforms scziDesk, scVI and scNAME in terms of run-

time. Despite the need to aggregate neighbor information using GCN 

in our model, we still achieve higher performance with less runtime. 

In relation to memory usage, scziDesk consumes the least amount of 

memory among the five methods. Both our model and contrastive-sc 

exhibit similar memory usage, which is significantly lower compared 

to scVI. In summary, our scAFGCC method achieves superior clus-

tering performance while maintaining comparable time and memory 

requirements.

6. Conclusion

High-throughput scRNA-seq provides valuable insights into cellu-

lar heterogeneity, rare cell identification, in-depth characterization of 

cellular states, and the dynamics of biological processes at the single-

cell level. In the field of scRNA-seq data analysis, one of the primary 

and crucial tasks is cell identification by accurately clustering cells into
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distinct subpopulations based on their molecular profiles. Many clus-

tering methods based on deep learning and contrastive learning have 

been proposed in recent years. However, these methods often do not 

fully explore the complex relationships between cells, and some con-

trastive learning-based approaches can be sensitive to patterns in data 

augmentation.

Therefore, we propose a novel augmentation-free graph contrastive 

learning method called scAFGCC for scRNA-seq data analysis. This ap-

proach tackles the limitations of existing methods by explicitly capturing 

the inherent cellular relationships without the need for data augmen-

tation techniques. scRNA-seq data exhibit high-dimensional and sparse 

characteristics, coupled with dropout events. In our model, we are 

able to capture the denoised latent representation of scRNA-seq data, 

which eliminates dropout events and improves the model’s performance. 

Additionally, the biological analysis further emphasizes that scAFGCC 

yields invaluable insights and information that can greatly contribute to 

downstream tasks in scRNA-seq data analysis. In summary, the experi-

mental results indicate that our method achieves superior performance 

in noisy and complex datasets compared to recent advancements in the 

field, and provides better computational efficiency.

While scAFGCC primarily focuses on capturing cell–cell relationships 

in its analysis, it may not fully consider the interactions and relationships 

between individual genes within the cells. Therefore, future research 

could explore integrating gene–gene relationships into the scAFGCC 

framework to improve model performance. The code is available at 

https://github.com/tswstart/scAFGCC.
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