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ARTICLE INFO ABSTRACT

Communicated by R. Vimieiro The emergence of single-cell RNA sequencing (scRNA-seq) has provided researchers with a powerful tool to in-
vestigate cell heterogeneity and human diseases at the level of individual cells. Cell clustering is a crucial step
in scRNA-seq data analysis to identify marker genes and recognize cell types. However, scRNA-seq data present

ii{;):fﬁﬁ challenges for clustering tasks due to their high dimensionality, sparsity, and noise. Although some contrastive

Augmentation-free contrastive learning learning methods have achieved good results in clustering scRNA-seq data, they are highly sensitive to data aug-

Graph convolutional network mentation schemes. Here, we propose scAFGCC, a novel augmentation-free graph contrastive clustering method

Clustering that combines graph convolutional network (GCN) and contrastive learning to exploit inter-cell relationships.

Visualization scAFGCC does not require data augmentations or negative samples to learn graph representations. Instead, we
generate positive samples by exploring the local structural information and the global semantics of the target
nodes. We integrate feature representation learning with clustering tasks. Additionally, we introduce a reconstruc-
tion module that pretrains the model, facilitating faster training and improved performance. Our experiments on
24 simulated and 13 real datasets show that scAFGCC outperforms seven state-of-the-art methods in terms of
accuracy and robustness. We also apply scAFGCC to downstream tasks such as cell annotation and marker gene
identification.

1. Introduction to the technical limitations of the sequencing process and the inherent

biological factors of the data, scRNA-seq data contain a large amount of
noise of varying degrees [10,11]. In addition, it has high dimensionality
and sparsity, which make cell clustering more complex [12]. Therefore,
itis urgent to study and develop effective clustering methods with higher
accuracy and broader applicability.

Numerous clustering methods developed specifically for analyzing
scRNA-seq data have been widely used in research. SC3 [13] is based
on k-means clustering, which integrates clustering results from multiple
similarity metrics and feature transformation techniques. The graph-
based Seurat [14] first transforms the data into a graph and then applies
graph clustering algorithms to identify clusters by discovering subgraphs
on a k-nearest neighbor (KNN) graph. The multi-view clustering with
graph learning (MCGL) method [15] constructs multiple feature spaces
from the raw scRNA-seq data and jointly performs graph learning, graph
factorization, and clustering in a unified optimization framework. There

Single cell RNA sequencing (scRNA-seq) is a powerful technique that
enables the transcription of RNA in individual cells into ¢cDNA and al-
lows for high-throughput sequencing. This technology provides a means
to quantify gene expression at the single-cell level [1,2]. Compared to
bulk RNA sequencing techniques, it can better reflect the differences and
similarities between different cells, providing a powerful tool for study-
ing the biological processes of individual cells [3]. Cell clustering is one
of the most important steps in sScRNA-seq data analysis [4,5]. SCRNA-seq
can identify new tumor cells and reveal the heterogeneity of tumor cells
[6]. Additionally, it can infer the trajectory of cell differentiation, shed-
ding light on the developmental processes occurring within cells [7]. It
can reveal the subtypes of cells and identify the expression patterns and
functional differences between different subtypes, thereby providing a
better understanding of the diversity and complexity of cells [8,9]. Due
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are subspace clustering methods based on low-rank representation, such
as SinNLRR [16] and SCCLRR [17]. The similarity matrices learned
from these models have greater advantages in distinguishing cell sub-
populations, but they are not suitable for highly sparse data. SIMLR
[18] uses multi-kernel learning to transform scRNA-seq data into a low-
dimensional space represented as a graph structure, and then applies
spectral clustering for cell grouping. However, some methods employ
straightforward linear dimensionality reduction followed by clustering.
This process may lead to the loss of crucial information as it relies
on the data structure or overlooks the manifold structure of the orig-
inal data, potentially impacting the calculation of the similarity matrix.
Additionally, due to the large size and complexity of scRNA-seq datasets,
overly complex clustering methods can result in excessive computation
and time costs.

To address the challenges posed by the increasing scale of scRNA-
seq data, deep learning-based methods have been proposed [19]. For
example, scGDC [20] simultaneously learns deep representations and
the affinity graph of cells by extending autoencoders with a self-
representation layer, and leverages generative adversarial learning to
enhance subspace discrimination for rare and heterogeneous cell types.
The scDCC [21] incorporates domain-specific knowledge as constraint
information through a loss function during the clustering process, en-
hancing the interpretability of the clustering results. The scziDesk [22]
combines weighted soft k-means clustering with a denoising autoen-
coder to enhance the association of similar cells and cluster cell pop-
ulations within the learned latent space. The scVI [23], which derives a
probabilistic representation of scRNA-seq data from a deep generative
model. The DCA [24] introduces the ZINB model into the autoencoder
and uses the features extracted by a multi-layer neural network for data
clustering. However, these methods only focus on the intrinsic feature in-
formation of the data and ignore the relationships between cells, leading
to unsatisfactory feature learning effects.

To better capture the topological structure among cells, scGNN [25]
utilizes graph neural networks to represent and aggregate cell-cell
relationships, and employs a truncated mixture of Gaussians model
to simulate heterogeneous gene expression patterns. However, scGNN
may introduce false noise edges mixed with true edges, potentially re-
sulting in biased clustering results. The contrastive-sc [26] employs
contrastive learning to acquire low-dimensional representations of sam-
ples. It learns the similarities and differences between samples and uses
this information to cluster cells effectively. The scGCC [27] introduces
innovative data augmentation techniques and integrates graph attention
networks into contrastive learning to extract feature information. The
UMGRL framework [28] employs a bi-level optimization strategy with
dual weight networks to enhance multi-view graph contrastive learn-
ing, enabling adaptive importance weighting at the node, graph, and
edge levels. The DT3OR framework [29] addresses distributional shifts
through dual test-time training, using self-distillation and contrastive
tasks to improve model adaptability in dynamic environments. These
recent advances highlight the growing potential of contrastive learn-
ing, particularly in graph-based representation and adaptation tasks.
However, existing contrastive learning methods are highly sensitive to
data augmentation techniques.

Therefore, this paper introduces a novel and effective graph con-
trastive learning-based clustering method called scAFGCC, which does
not require data augmentation or negative samples. Specifically, this
model undergoes a two-stage training process. In the pre-training stage,
we fine-tune the parameters of the GCN using the reconstruction mod-
ule. In the subsequent training stage, we further optimize the parameters
of the GCN utilizing the augmentation-free graph contrastive learning
module and the clustering module, aiming to achieve optimal perfor-
mance. Our approach eliminates the need for negative sample pairs
and relies solely on the local structural information and global seman-
tic information of target nodes to explore their positive sample space.
UMAP reduces dimensions by preserving local relationships between
data points, thereby better retaining the structural information among
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samples in single-cell data. It enables faster processing of large-scale
single-cell datasets while maintaining good dimensionality reduction
performance. By visualizing single-cell data as points in two-dimensional
space, UMAP makes the distribution of data more understandable and
interpretable [30].

2. Methods
2.1. The framework of scAFGCC

The workflow of scAFGCC is depicted in Fig. 1 and comprises three
key components: a reconstruction module, an augmentation-free graph
contrastive learning module, and a clustering module. Specifically, the
reconstruction module pretrains the model by reconstructing the gene
expression matrix and adjacency matrix to speed up training and capture
clustering-friendly features. The augmentation-free graph contrastive
learning module utilizes both local and global semantic information to
identify positive samples, optimizing the model to minimize distances
between similar cells and maximize distances between different cell
types. Meanwhile, we combine the contrastive learning module and clus-
tering module to fully extract meaningful features. The model training
process involves two stages: first, we pretrain the model using the re-
construction module. The loss function during this pretraining stage is
shown as follows:

Lpre—tra/n = min (Lrecon) ’ (1)
Lrecon =(l-a) Lrecon—adj + aLrecon—exp' (2)
Where L,ocop—qqj @0 Lyocon—cxp denote the reconstruction loss of ad-

jacency matrix and expression matrix, respectively. The parameter « is
a coefficient that balances the two losses (set to 0.2 in our experiment).
Second, we utilize the contrastive loss (L,;) and the Kullback-Leibler
(KL) loss (Ly;) to further train the model. The loss function during this
training stage is represented as follows:

Liygin =min [(1 = §) Lo, + Ly - 3)

Where L, and L, represent contrastive loss and KL loss, respec-
tively. The parameter f is also a coefficient that balances the two terms
(set to 0.2 in our experiment). The detailed expressions of these losses
are illustrated in the following sections.

2.2. Data preprocessing

Due to the high noise and sparsity characteristics of scRNA-seq data,
a significant number of entries in the matrix where genes are not ex-
pressed may cause noise interference and generate invalid information,
so data preprocessing steps are necessary. We use the Scanpy [31] tool to
accomplish this task. First, cells with low total gene expression and genes
with few counts expressed in cells are filtered out. Second, a logarithmic
transformation is applied to the filtered expression matrix to mitigate the
adverse effects caused by sequencing depth differences. Third, to facil-
itate effective comparison between cells, the scRNA-seq data matrix is
normalized. Finally, highly variable genes are selected and the count
values are scaled to zero mean and unit variance.

2.3. Construction of scRNA-seq data graph

To represent the cell relationships in the expression matrix X, we
define an undirected graph for the scRNA-seq data, which is essen-
tially a cell connectivity graph represented as an adjacency matrix A
in the model.To align with the positive sample selection strategy in the
downstream contrastive clustering module, A is constructed using the k-
nearest neighbor (KNN) algorithm. InA, each node corresponds to a cell
and edges represent relationships between cells. This design offers the
dual benefits of computational efficiency and effective capture of simi-
lar biological features. Specifically, if cell j is one of the k-nearest nodes
to cell i, an edge is assigned between cell j and i (i.e., A;; = A;; = 1;

o
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Fig. 1. The workflow of scAFGCC, which consists of three main components: the reconstruction module, the augmentation-free graph contrastive learning module,
and the clustering module. First, the reconstruction module pretrains the model by reconstructing the gene expression matrix X and adjacency matrix A. Then, the
augmentation-free graph contrastive learning module utilizes local structural and global semantic information to identify positive samples. Finally, integrate the
contrastive learning module and clustering module together to extract meaningful features by minimizing the contrastive loss and KL loss.

otherwise, 4;; = A;; = 0). We use cosine similarity to measure the dis-
tance between cells, which offers the advantage of maintaining a certain
robustness and accuracy in handling high-dimensional sparse data and
different distribution situations [32].

2.4. Reconstruction module

To extract as many common features as possible from the training
data and reduce the burden of the model on specific learning tasks, we
add a reconstruction module in scAFGCC. This module comprises two
independent decoders: the Linear Decoder (LD) and the Inner Product
Decoder (PD). We fully utilize the cellular feature information and the
topological structure between cells to reconstruct the gene expression
matrix X and restore the adjacency matrix A. By minimizing the loss
between the original data and the reconstructed data, the model is pre-
trained to capture more clustering-friendly features.

Specifically, LD consists of two linear layers and its output is X’ =
LD (Z). The reconstruction loss is defined as:

L =X -x'|3. “

recon-exp

Z obtains A’ through PD, with the formula: A’ = PD(Z) = 6 (ZZ"),
where ¢ () is an activation function. The reconstruction loss of the adja-
cency matrix adopts the binary cross-entropy loss function with negative
sampling:

1 R o
Lrecon—adj = _E (Z log (YFOS ) + Z log (1 - y;-’eg )> > %)
i J

where $**° and 7 are the outputs of the PD, representing positive
edges and randomly sampled negative edges. E is the number of edges
in the graph.

2.5. Augment-free graph contrastive clustering module

To achieve a reduction in intra-cellular distance among the same
cell types and an expansion in inter-cellular distance between different

cell types, we introduce the graph contrastive learning module based on
the idea of Augment-Free Graph Representation Learning (AFGRL) [33].
AFGRL avoids ignoring structural information due to data augmentation
and fully leverages the global semantics and local structural information
of scRNA-seq data to better capture pairwise proximity relationships be-
tween cells. Unlike AFGRL, we incorporate a reconstruction module and
a clustering module. Together, they complement the augmentation-free
contrastive objective and are specifically designed to enhance cluster-
ing performance for scRNA-seq data. In scAFGCC, we use the GCN to
implement two independent encoders: the online encoder f, () and the
target encoder f (-). These encoders take the preprocessed expression
matrix X and the adjacency matrix A as inputs, generating the online
representation H' 0= fo(X, A) and target representation H ¢ = fg(X ,A),
respectively. The i-th row elements of H? and H* correspond to the dis-
tinct node embeddings of the same sample cell x;, denoted as h? and hf.
f¢ () is updated by the exponential moving average (EMA) of f, (-) [34].

For each cell x; € X, we need to identify the set of real positive nodes
P, that will ultimately be used to calculate the contrastive loss. Nodes
similar to x; are screened and marked as the nearest neighbor node set
B;. The screening process consists of two steps. The first step involves
calculating the cosine similarity between cell x; and all other remaining
cells x;, with the following formula:

ne - Kt
. ! J
sim (x;,x;) = —————,V¥x; € X. (6)
SR 1A 7 .

The second step involves using the KNN algorithm to find the top k (topk)
nodes that are similar to cell x;, to obtain B,;.

However, relying solely on K-nearest neighbor (KNN) search to es-
tablish cell relationships has limitations, as it is unidirectional and does
not incorporate label information during computation. This can lead to
noise in the nearest neighbor node set B;, necessitating the removal of
false positive samples. We address this issue from two perspectives. From
a global perspective, certain nodes may exhibit semantic similarity to x;
and belong to the same cluster, but they may not share an edge in A. To

o
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capture the semantic information of the original data, we apply the k-
means clustering algorithm to the node embeddings hf, resulting in a cell
collection named C;. C; represents a cluster that includes cells similar to
x; and preserves the global semantic characteristics of the data. Since
the k-means is sensitive to the initialization of the cluster centroids, the
clustering process is run multiple times, and C; is the union of the results
to ensure robustness. From a local perspective, based on the adjacency
matrix A, we can identify and label the nodes that are directly connected
to x; as N;. The final P, can be calculated as follows:

P,=(B,nC)U (B, nN;). (7)

The size of the positive sample set P, is adaptive to both the dataset scale
and the diversity of cell types, while its quality is guaranteed through
the integration of KNN-based local similarity and K-means-based global
semantic consistency.

scAFGCC enhances the representation of the target node x; and
generates better node embeddings. The contrastive loss is defined by
maximizing the cosine distance between the target node x; and P,. This
approach is utilized to quantify the similarity between them, and the
contrastive loss is given by the following expression:

(€))

C £

RN ]

where z¢ = g, (f (x;,A)).Vx; € X. gy(-) represents the predictor
network. N is the number of cell nodes.

2.6. Clustering module

Drawing on DEC [35], it can be concluded that clustering perfor-
mance can be significantly improved by learning the mapping from the
data space to a low-dimensional feature space and iteratively optimiz-
ing the clustering objective. First, soft assignments between clustering
centers y; and embedding nodes z; are calculated using Student’s
t-distribution:

_atl
2 2
<1 - /a)
4 = ot 9

5 (vefrmml )

where z; represents the latent representation of the cell node x;, and
a denotes the degrees of freedom of the t-distribution (set to 1). Based
on g;;, we square it and normalize it using soft cluster frequencies to
obtain the auxiliary distribution p;;, which is expressed by the following
formula:

CI,ZJ/Z, 4dij
Zj/ qu//Z,« 4aij

pij = (10)

Finally, we define the clustering loss as the KL divergence between
the soft assignments ¢; and the auxiliary distribution p;, as shown in the
following formula:

p..
Ly =KL(P|Q)= )Y p,;log q—’ an
i ij

3. ScRNA-seq datasets

To thoroughly evaluate the performance of our model, we collected
24 simulated datasets and 13 real-world datasets. For simulated datasets,
we generated 12 balanced datasets and 12 imbalanced datasets using
the R package “Splatter” [36]. The balance of the datasets is primarily
determined based on whether the cell clusters have the same size. For
the balanced datasets, they contain 4, 8, 12, or 16 cell clusters, with each
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cluster consisting of 250 cells. Each cell has 2500 genes, and the data
sparsity ranges from 28 % to 47 %. As for the imbalanced datasets, each
dataset includes 3000 cells and 2500 genes. They have the same number
of cell clusters as the balanced datasets, and the data sparsity ranges
from 29 % to 46 %. Further detailed information regarding balanced
and imbalanced datasets is recorded in Supplementary Tables S1 and
S2.

Furthermore, we collect 13 real-world scRNA-seq datasets from pub-
licly accessible platforms. These datasets are diverse in terms of tissue
types, including human brain, human pancreas, mouse embryo, and
mouse diaphragm, as well as in terms of biological systems, such as
different cell types and varying numbers of cell clusters. The datasets,
which come from different sequencing platforms, provide a broad range
of cell numbers ranging from 268 to 3605 to evaluate our model’s
performance. Specifically, the 13 datasets consist of Klein [37], Deng
[38], Diaphragm [39], Campl [40], Darmanis [41], Muraro [42], Pollen
[43], Zeisel [44], Humanl, Human2, Human3 [45], Tosches [46] and
Shekhar [47] each with detailed information shown in Table 1 and
Supplementary Table S3.

4, Evaluation metrics

The evaluation metrics for clustering can be categorized into external
evaluation metrics and internal evaluation metrics. External evaluation
metrics assess the quality of clustering results using known data labels
or class information. In this paper, we employ the external evalua-
tion metrics: Adjusted Rand Index (ARI) [48] and Normalized Mutual
Information (NMI) [49] to assess model performance.

The ARI can evaluate the similarity of two assignments by comparing
all the sample pairs while ignoring permutations. It evaluates the effec-
tiveness of clustering by calculating the number of the sample pairs that
are distributed in the same or different class clusters in the predicted
label set P = { P, Py,..., P, } and real label set T = {T\,T), ..., T }. It is
defined specifically as:

ARI(P,T) =

a2

where n;; represents the number of cells that are present in both P; and
T;. a; and b; represent the respective cell counts in P, and 7;. ARI ranges
from —1 to 1. The larger the value, the more consistent the clustering
results are with the real situation.

The NMI is commonly used in clustering, which measures the sim-
ilarity between the two clustering results, ignoring the permutations.
The NMI ranges from O to 1. The higher the NMI, the more accurate the

Table 1
Detailed information of the 13 real scRNA-seq datasets.

Dataset Cells Genes Cluster number Species Accession ID
Klein 2712 24,175 4 Mouse GSE65525
Deng 268 22,431 6 Mouse GSE45719
Diaphragm 1858 22,966 6 Mouse GSM4505405
Campl 777 19,020 7 Human GSE81252
Darmanis 420 22,083 8 Human GSE67835
Muraro 2126 19,127 10 Human GSE85241
Pollen 301 23,730 11 Human SRP041736
Zeisel 3005 19,958 12 Mouse GSE60361
Humanl 1937 20,125 14 Human GSM2230757
Human2 1724 20,125 14 Human GSM2230758
Human3 3605 20,125 14 Human GSM2230759
Tosches 18,664 23,500 15 Reptilian unknown
Shekhar 26,830 13,166 18 Mouse unknown
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Table 2

Comparison of ARI values for ten clustering methods across 13 real scRNA-seq datasets.
Dataset K-means scziDesk scVI Seurat SIMLR SOUP contrastive-sc ~ scNAME scBGEDA scAFGCC
Humanl 0.436 +0.08 0.724 +0.13  0.442+0.02 0.500 + 0.00 0.293 +0.02 0.268 + 0.01  0.684 + 0.09 0.776 + 0.10 0.820 + 0.03 0.961 + 0.01
Human2 0.368 +0.12 0.764 +£0.13  0.565 +0.02 0.442+0.00 0.366 +0.02 0.597 +0.14  0.775 + 0.09 0.807 + 0.07 0.881 + 0.07 0.929 + 0.02
Human3 0.650 + 0.21  0.822+0.08 0.703 +0.02 0.514 +0.00 0.506 +0.03  0.213 +0.02  0.611 + 0.02 0.745 + 0.12 0.750 + 0.04 0.961 + 0.00
Diaphragm  0.148 +0.02  0.361 +0.01  0.312+0.02 0.316 +£0.00  0.402 +0.02 0.431 +0.00 0.451 +0.02  0.791 +0.08 0.610+0.01  0.771 + 0.08
Campl 0.669 +0.12  0.755+0.00 0.662 +0.03 0.599 + 0.00 0.614 +£0.03 0.546 + 0.00  0.725 + 0.03 0.743 + 0.12 0.607 + 0.03 0.788 + 0.00
Darmanis 0.580 + 0.10  0.691 +0.05 0.718 +0.07 0.628 +0.00 0.632 +0.06 0.343 +0.08 0.704 + 0.02 0.765 + 0.11 0.717 + 0.07 0.838 + 0.01
Deng 0.596 +0.27  0.867 +0.02  0.335+0.04 0.325+0.00 0.610+0.08 0.824+0.01 0.845+0.02 0.770+0.10 0.876 + 0.00 0.834 + 0.01
Klein 0.705 + 0.04 0.815+0.02 0.541 +0.05 0.778 +0.00 0.510 +0.08 0.471 +0.00  0.754 + 0.01 0.747 + 0.12 0.843 + 0.04 0.962 + 0.00
Muraro 0.738 +0.09 0.789 +0.07 0.485+0.02 0.446 +0.00 0.321 +0.03 0.536 +0.08 0.815 + 0.01 0.772 + 0.10 0.849 + 0.09 0.904 + 0.00
Pollen 0.806 + 0.06  0.881 +0.04 0.880 +0.04 0.767 +0.00 0.806 +0.02  0.430 + 0.02  0.898 + 0.01 0.797 + 0.08 0.868 + 0.03 0.918 + 0.02
Zeisel 0.484 +0.01 0.608 +£0.04 0.364 +0.03 0.327 +0.00 0.613+0.05 0.509 +0.01 0.540 + 0.06 0.820 + 0.02 0.623 + 0.01 0.820 + 0.01
Tosches 0.693 +0.13  0.617 £0.07 0.566 + 0.02  0.444 +0.00 0.575+0.04 0.480 +0.01 0.392 + 0.04 0.584 + 0.06 0.712 + 0.02 0.891 + 0.01
Shekhar 0.507 +£0.07 0.351 +0.06 0.467 +0.03 0.714 +0.00 0.823 +0.05 0.752+0.03  0.463 + 0.03 0.712 + 0.09 0.705 + 0.05 0.979 + 0.02

partition. The formula is shown as follows: the minority classes. However, our model still maintains high cluster-

ing performance. Real-world data is often imbalanced, and our model
NMI(P,T) = M (13) exhibits high accuracy and robustness to it.
H (P)+ H(T)

where I (P;T) represents the mutual information, P and T stand for
the predicted and true labels of cells, respectively, and H (-) denotes the
Ccross entropy.

5. Results

To assess the performance of scAFGCC, we select nine state-of-the-art
methods for comparison, including traditional PCA-based dimension-
ality reduction with K-means and Seurat, semisoft clustering method
SOUP, multi-kernel similarity learning method SIMLR, as well as three
other deep learning-based methods. The detailed information regarding
the comparison methods is presented in Supplementary Table S4.

scAFGCC is implemented in Python 3 using the PyTorch framework.
Both the online encoder and the target encoder consist of a single layer of
GCN. The input dimension is determined by the number of genes, while
the output dimension is set to 512, which serves as the dimensionality
of the embedding vectors. The predictor network consists of two linear
layers with node sizes of (1024, 512). scAFGCC is initially pretrained
for 50 epochs and then undergoes a formal training phase of 100 epochs
using the AdamW optimizer. The initial learning rate is set to 0.001. In
constructing the scRNA-seq graph, k represents the number of neighbors,
initially set to 10. ropk specifies the selection of the top k nodes with the
highest similarity, set to 3. We employ the HDBSCAN [50] algorithm for
cell clustering.

5.1. Clustering analysis in simulated datasets

We conduct cluster analysis on 12 balanced and 12 imbalanced
datasets using six state-of-the-art methods. The clustering performance
is evaluated with ARI and NMI metrics. For each dataset, each method is
independently run 5 times, and the average is taken as the final result.
The experimental results are presented as box plots in Supplementary
Figure S1.

From the figure, it can be seen that our model outperforms the others,
whether on balanced or imbalanced datasets. On balanced datasets, the
average ARI of our model is 0.04 higher than that of contrastive-sc and
0.17 higher than that of scziDesk. The average NMI of our model is 0.07
higher than that of contrastive-sc and 0.17 higher than that of scziDesk.
On imbalanced datasets, the average ARI and NMI of our model are
0.14 and 0.11 higher than those of contrastive-sc, respectively. We also
observe that the clustering performance of all methods declines from bal-
anced to imbalanced datasets, which is reasonable. Imbalanced datasets
refer to a situation where there is a significant difference in the number
of samples among different classes. Usually, the minority class contains
far fewer samples compared to the majority class, potentially resulting in
clustering algorithms performing poorly in recognizing and separating

5.2. Clustering analysis in real datasets

In this experiment, we apply the scAFGCC model to 13 real datasets
that are annotated with ground truth labels. We then compare its
clustering performance with nine state-of-the-art models to assess its ef-
fectiveness. We use ARI and NMI as evaluation metrics. To ensure the
stability and reliability of the results, we run all methods 10 times using
the default parameters. We then calculate the average value for each
method and measure the standard deviation as the error bar to assess
the robustness of the models. Next, we perform parameter optimization
on contrastive-sc and scziDesk to update the above results.

Table 2 and Supplementary Table S5 present the quantitative val-
ues of two distinct metrics for ten different methods across a total of
13 real scRNA-seq datasets. We can observe that scAFGCC outperforms
the other nine clustering methods on almost all datasets. Specifically,
except for Deng and Diaphragm, scAFGCC achieves the highest ARI and
NMI among all the compared methods, with ARI and NMI scores both
exceeding 0.77 and 0.70, respectively. Despite not achieving the high-
est performance in Deng, scAFGCC still ranks fourth in terms of ARI
values. This could be because the Deng dataset has a small number of
samples, causing the graph to be dense and the model to overfit. In
particular, for Human1, Human2, and Human3, scAFGCC demonstrates
significantly higher ARI values compared to contrastive-sc, with differ-
ences of 0.28, 0.15, and 0.35, respectively. For Darmanis and Pollen, the
ARI values of scAFGCC are 0.15 and 0.04 higher than those of scziDesk,
respectively. In comparison to contrastive-sc, sScAFGCC exhibits a re-
markable improvement with an increase of 0.21 in ARI and 0.19 in
NMI values for the Klein dataset. The lower error bars in scAFGCC in-
dicate its higher robustness compared to other methods. Furthermore,
on large-scale datasets our method consistently surpasses all competing
approaches. In particular, it achieves notable improvements in ARI over
scBGEDA, the second-best method: 0.18 on the Tosches dataset and 0.27
on the Shekhar dataset. These results underscore the superior robust-
ness and scalability of our approach in addressing large-scale scRNA-seq
data. To assess the performance and competitiveness of scAFGCC more
accurately, we compare this model with the most recent methods in the
field, such as scNAME [51] and scBGEDA [52]. The two methods are
executed with 10 different random seeds on 13 real datasets each, and
we calculate the mean and standard deviation of ARI and NMI for each
dataset. The corresponding experimental outcomes are documented in
Supplementary Table S6, revealing that, scAFGCC demonstrates superior
performance compared to the two recent methods.

To provide a more intuitive demonstration of scAFGCC’s cluster-
ing performance, we select two real datasets (Humanl and Klein) and
employ UMAP for dimensionality reduction and visualization. To pro-
mote uniformity and impartiality in our evaluations across diverse

o
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Fig. 2. UMAP visualization of scAFGCC and other clustering methods on two datasets. (A) Humanl dataset. (B) Klein dataset.

datasets and methods, we utilize the default UMAP parameters pro-
vided by the Scanpy toolkit consistently throughout all experiments.
We choose five models for comparison and utilize ARI and silhouette
coefficient [53] to measure their clustering performance. The ground
truth labels are also utilized to evaluate and validate the clustering per-
formance. As shown in Fig. 2 (the UMAP plots for the other datasets
are displayed in Supplementary Figure S2), scAFGCC demonstrates clear
and distinct partitioning of various cell clusters on the both datasets.
Furthermore, scAFGCC attains the highest ARI values and silhouette co-
efficients on the both datasets, surpassing 0.96 and 0.70, respectively.
In contrast, other methods tend to mix different cell subtypes together.
The clustering results obtained using scAFGCC are visually compelling,
clearly demonstrating effective separation.

5.3. Ablation study

To assess the performance gains introduced by the reconstruction
module and clustering module, we conduct an ablation experiment on
scAFGCC. We define three variant models: scAFGCC-R, which excludes
the reconstruction module; scAFGCC-C, which excludes the clustering
module; and scAFGCC-R-C, which excludes both the reconstruction and
clustering modules. We perform experiments on seven datasets with
different species and varying numbers of clusters (Humanl, Human2,
Diaphragm, Deng, Muraro, and Pollen). The evaluation metrics are ARI
and NMI. To obtain reliable results, we execute each variant model
10 times and derive the average outcomes. The corresponding exper-
imental results are presented in Fig. 3. We can observe that scAFGCC
outperforms the three variant models. This indicates that both the
reconstruction module and clustering module indeed contribute to per-
formance improvements. For example, in the Deng dataset, scAFGCC

achieves an ARI improvement of 0.10, 0.06, and 0.06 over scAFGCC-R,
scAFGCC-C, and scAFGCC-R-C, respectively.

5.4. Hyperparameter analysis

The k and topk are two hyperparameters in our model. The k rep-
resents the number of neighbors for each cell. The fopk represents the
number of similar cell nodes in the set B;. We utilize ARI and NMI as
evaluation metrics. The reported experimental results are the average
values obtained from running the experiments independently 5 times.
For topk, we select a range from 2 to 10. Fig. 4(A) displays the ARI val-
ues for all datasets with different ropk values. The clustering performance
of scAFGCC remains relatively stable as the ropk value increases, which
suggests that scAFGCC is not highly sensitive to fopk. topk = 6 achieves
the best performance across the majority of the datasets. We conduct
scAFGCC on all datasets with k = {5, 10, 15,20,25,30}. The results are
recorded in Fig. 4(B). It is apparent that scAFGCC demonstrates low sen-
sitivity to variations in the k parameter across most datasets. However, it
is worth noting that in datasets such as Human1, Diaphragm, Darmanis,
and Deng, the performance of scAFGCC exhibits notable changes as the
k value increases. On most datasets, k = 5 enables scAFGCC to achieve
optimal performance. Supplementary Figure S3 shows two line plots
depicting the NMI values.

For the above four datasets that are sensitive to variations in the k,
we perform joint optimization of both k and topk values. As shown in
Fig. 4(C), this further confirms the sensitivity to both topk and k param-
eters. From the figure, we can observe that in the case of Humanl and
Deng datasets, lower values of k result in higher model performance,
while the opposite is true for Diaphragm and Darmanis datasets.



Ao )l gauass dozy

https://www.tarjomano.com )
e 0lnl ol oy90

S. Tian, Y. Wang, Y. Wang et al. Neurocomputing 658 (2025) 131698

(A) ARI (B) NMI
1.0 1.0
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.0 L 0.0 L
> Q <S> > S S o > < <S> S o
& & & S P e R
5° 5°
[ scAFGCC [ scAFGCC-R [ scAFGCC-C [ scAFGCC-R-C

Fig. 3. Performance comparison of scAFGCC and its variant models (scAFGCC-R, scAFGCC-C, scAFGCC-R-C) on seven datasets. (A) ARI scores. (B) NMI scores.
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Fig. 4. Analysis of scAFGCC hyperparameters (topk and k). (A) ARI values for different datasets with varying topk values. (B) ARI values for different datasets with

varying k values. (C) Joint optimization of k and topk for sensitive datasets.

5.5. Robustness analysis

In scRNA-seq data analysis, dropout events are a significant chal-
lenge. Next, we evaluate the robustness of scAFGCC in handling dropout
events. During the data preprocessing stage, we simulate dropout events
by setting a specific proportion of non-zero values to zero. We select six
datasets with different species and varying cluster numbers, including
Humanl, Human2, Darmanis, Deng, Klein and Muraro. For fair compar-
ison, we run scAFGCC 5 times using default parameters and utilize the
average values of ARI and NMI to evaluate the clustering performance.
For each dataset, we respectively set dropout rates of 0, 20, 40, and
60 % to test the robustness of the model. High dropout events result in
information loss in scRNA-seq data, posing greater challenges for dimen-
sionality reduction and clustering algorithms. The relevant experimental
results are shown in Fig. 5. It is evident that in the majority of datasets,
as the dropout rate increases, there is a marginal decrease in the per-
formance of the model. This provides further evidence that scAFGCC
exhibits high stability and robustness in handling dropout events.

Furthermore, we conduct a down-sampling experiment on the same
six datasets. To ensure fairness, sSCAFGCC is executed five times, yielding
average values for ARI and NMI. We downsample the datasets, extract-
ing 100, 80, 60, and 40 % of the cells, respectively. The experimental
results are presented in Supplementary Figure S4. We can conclude

that scAFGCC demonstrates stability across different down-sampling
datasets, further highlighting its robustness.

5.6. Biological analysis

Biological analysis plays a crucial role in scRNA-seq data analysis.
To further investigate the biological significance of the clustering results
obtained from scAFGCC, we perform downstream tasks, including cell
annotation and marker gene identification for the Darmanis dataset.

In this part, we perform cell annotation. Specifically, based on the
predicted labels from scAFGCC and ground truth labels, we separately
utilize the Wilcoxon Rank Sum test [54] to identify the top 50 differ-
entially expressed genes (DEGs) for each predicted cluster and ground
truth cluster. By comparing the number of overlapping genes between
each predicted cluster and ground truth cluster, we calculate the over-
lapping ratio as a measure of similarity between the predicted clusters
and ground truth clusters. To validate the superiority of scAFGCC, we
also compare it with four other models. The visual results are presented
in Fig. 6(A). We can observe that scAFGCC can assign each cell type to a
unique predicted cluster. However, for methods such as contrastive-sc,
scziDesk, and K-means, they are unable to assign OPC (Oligodendrocyte
Precursor Cell) to a single predicted cluster. For scVI, microglia can-
not be unambiguously assigned to a single predicted cluster, and no
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Fig. 5. Clustering performance (ARI and NMI) of scAFGCC on six datasets with varying dropout rates (0 %, 20 %, 40 %, and 60 %).
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Fig. 6. Result analysis of cell annotation and marker gene identification in the Darmanis dataset. (A) Matrix plots illustrating the overlap between the top 50 DEGs
in clusters identified by five methods and the gold standard cell types. (B) The matrix diagram of the first three marker genes for each cluster predicted by scAFGCC.

specific cell type is discovered to correspond to cluster 5. K-means re-
peatedly assigns microglia to clusters 0 and 2, while clusters 4 and 7
cannot be accurately annotated by K-means. Overall, scAFGCC is able to
fully annotate all predicted clusters. Specifically, the predicted clusters
(0-7) can be annotated as astrocytes, fetal-replicating, fetal-quiescent,
microglia, neurons, endothelial, oligodendrocytes, and OPC.
Furthermore, as a part of the biological analysis, marker gene iden-
tification is conducted. We also utilize the Wilcoxon Rank Sum test to
identify marker genes for each cluster predicted by scAFGCC. As shown
in Fig. 6(B), they respectively present the matrix plot and heat map of the
top three marker genes for each cluster predicted by scAFGCC (The top
10 marker genes for different cell clusters are shown in Supplementary
Figure S5). We can identify clusters with enriched expression of specific
marker genes, which helps in characterizing and distinguishing different
cell types within the dataset. To further validate the presence of marker
genes in the annotated cell types, we compare them with the marker
genes documented in the Cell Marker database [55] and the Darmanis
dataset [41]. The results are recorded in Supplementary Table S7. We

discover that the majority of marker genes align with the records in the
database. However, there are a few specific genes that are not docu-
mented, suggesting the possibility of novel candidates for marker genes.
For instance, B2M and CEBPD show considerably higher expression lev-
els in endothelial cells compared to others, indicating their potential as
marker genes for endothelial cells.

To explore the biological relevance of the identified marker genes,
we conduct Gene Ontology (GO) and KEGG pathway analysis. Initially,
we select the top 40 marker genes sorted by p-value within each clus-
ter, resulting in a total of 300 genes after converting gene symbols to
ensemble IDs. We elucidate the biological functions of these genes. The
distribution of genes enriched in GO terms is presented in Fig. 7, while
the top 25 terms of the related GO sorted by p-values, are documented
in Supplementary Figure S6. In the biological process category, GO
terms such as ‘nervous system development’ (GO:0007399) and ‘multi-
cellular organism development’ (GO:0007275) exhibit high enrichment
levels, both strongly associated with the development of human brain
cells [41]. In the cellular component category, the most enriched and
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Fig. 7. Genomic interpretability of scAFGCC in the Darmanis dataset: Exploring the gene distribution across three categories of GO enrichments.
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Fig. 8. Efficiency analysis of scAFGCC. (A) Runtime analysis. (B) Memory usage analysis.

notable GO term is ‘cell junction’ (GO:0030054). Cell junctions play
a crucial role in the formation and regulation of brain vasculature
[56]. In the molecular function category, the GO term ‘protein binding’
(G0:0005515) stands out with a small p-value and a substantial gene
distribution, crucial for the formation of adult neural stem cells [57].
Moreover, the top 15 terms of KEGG pathways ranked by p-value are
shown in Supplementary Figure S7(A). The top pathway is ‘MicroRNAs
in cancer’. Although this pathway is related to cancer, microRNAs also
play a crucial role in the nervous system, participating in the devel-
opment and regulation of neuronal function. The pathway with the
highest percentage of genes is ‘PI3K-Akt signaling pathway’, which is
also significant in the nervous system, participating in processes such
as neuronal growth, survival, and synapse formation [58]. Meanwhile,
detailed information about this pathway is visualized in Supplementary
Figure S7(B). Overall, these results indicate that scAFGCC can uncover
meaningful biological information.

5.7. Efficiency analysis

To validate the efficiency of scAFGCC, we employ the R package
“Splatter” to simulate six datasets of varying sizes. These datasets in-
clude 1k, 2k, 4k, 6k, 8k, and 10k cells, each consisting of 2000 genes.
As the number of cells varies, we measure the runtime and memory us-
age of scAFGCC. The results are presented in Supplementary Figure S8.
It is evident that the runtime and memory usage of scAFGCC do not

exhibit quadratic or exponential growth with the number of cells, but
instead demonstrate a linear increase.

Furthermore, we perform runtime and memory analysis on four deep
learning methods, including scAFGCC, scNAME, contrastive-sc, scVI,
and scziDesk, using 11 real datasets. In Fig. 8, we can observe that
contrastive-sc is the fastest method among the five methods, possibly due
to its fewer trainable parameters. However, it is worth mentioning that
our model achieves superior performance compared to contrastive-sc.
Our model outperforms scziDesk, scVI and scNAME in terms of run-
time. Despite the need to aggregate neighbor information using GCN
in our model, we still achieve higher performance with less runtime.
In relation to memory usage, scziDesk consumes the least amount of
memory among the five methods. Both our model and contrastive-sc
exhibit similar memory usage, which is significantly lower compared
to scVL. In summary, our scAFGCC method achieves superior clus-
tering performance while maintaining comparable time and memory
requirements.

6. Conclusion

High-throughput scRNA-seq provides valuable insights into cellu-
lar heterogeneity, rare cell identification, in-depth characterization of
cellular states, and the dynamics of biological processes at the single-
cell level. In the field of scRNA-seq data analysis, one of the primary
and crucial tasks is cell identification by accurately clustering cells into
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distinct subpopulations based on their molecular profiles. Many clus-
tering methods based on deep learning and contrastive learning have
been proposed in recent years. However, these methods often do not
fully explore the complex relationships between cells, and some con-
trastive learning-based approaches can be sensitive to patterns in data
augmentation.

Therefore, we propose a novel augmentation-free graph contrastive
learning method called scAFGCC for scRNA-seq data analysis. This ap-
proach tackles the limitations of existing methods by explicitly capturing
the inherent cellular relationships without the need for data augmen-
tation techniques. scRNA-seq data exhibit high-dimensional and sparse
characteristics, coupled with dropout events. In our model, we are
able to capture the denoised latent representation of scRNA-seq data,
which eliminates dropout events and improves the model’s performance.
Additionally, the biological analysis further emphasizes that scAFGCC
yields invaluable insights and information that can greatly contribute to
downstream tasks in scRNA-seq data analysis. In summary, the experi-
mental results indicate that our method achieves superior performance
in noisy and complex datasets compared to recent advancements in the
field, and provides better computational efficiency.

While scAFGCC primarily focuses on capturing cell-cell relationships
in its analysis, it may not fully consider the interactions and relationships
between individual genes within the cells. Therefore, future research
could explore integrating gene-gene relationships into the scAFGCC
framework to improve model performance. The code is available at
https://github.com/tswstart/scAFGCC.
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